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1 Introduction

The two applications addressed in this report are

"* spatial localization and scattering coefficient computation from the noisy echoes of
chirp pulses interrogating a multiple point target environment,

"* numerical deconvolution of Krueger's formula relating the reflectivity kernel p of a
dielectric material to the echo resulting from the interaction of an orthogonally incident
chirp pulse with the material.

In parallel with these applications we develop several topics in the theory of the finite Zak
transform (FZT). The FZT maps one-dimensional signals (vectors) onto two-dimensional
signals (matrices). The Zak space representation provides a time-frequency image of the
one-dimensional signal. Signal decomposition and processing such as convolution, matched
filtering and the Fourier transform can be interpreted geometrically and computed by matrix
operations in Zak space.

A key feature in the Zak space approach not available in a standard time-domain or
frequency-domain representation is that digital signal processing can be viewed through
different time-frequency windows. For applications addressed in this report a specific win-
dow W0 is taken, but windows can be chosen to match classes of waveforms, special signal
decomposition and processing and application noise characteristics.

The physical model in the applications is the transmission of a chirp pulse and the critical
sampling of its echo from a multiple point target environment or a dielectric material. We
show that the collection of shifts of a critically sampled chirp pulse is orthogonal when viewed
through the window W0. A negative result of windowing is aliasing which will be discussed
in detail, but for the present discussion will be ignored.

Through W0 a critically sampled echo of a chirp pulse can be represented as an orthogonal
linear expansion whose coefficients in the first application are the scattering coefficients of
the targets and in the second application are samples of the reflectivity kernel. Matched
filtering reduces to computing the coefficients of an orthogonal expansion.

A closely related, equally important result is that the longer the time duration of the
chirp pulse, the finer its critical samples resolve targets and sample reflectivity kernels.

The FZT is especially tuned for chirp pulses. The main result here is that the support
of the FZT of a critically sampled chirp pulse and its shifts are lines in WO. The support of
a critically sampled echo is a series of lines. Dechirping results in a series of horizontal lines.

Under certain conditions the windowed Zak space representation of a critically sampled
echo of a chirp pulse can be image processed to reduce noise and clutter. This processing can
stand alone or be a preprocessing step to the windowed matched filter approach described
above.

As we will see these conditions place constraints on the number and/or values on the
lines in the Zak space representation of the critically sampled echo. Essential use is also
made of the vanishing off of these lines in the noise-free case.

The conditions under which these image processing methods apply are discussed mainly
in Sections 6 and 14. In the first application the relationship between the product of the
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chirp time duration and chirp rate and the number and/or spacing of targets is key. In the
second application the relative sizes of the chirp time duration and the material relaxation
time is the crucial factor.

In future work we expect to extend these results to multiple chirp and chirp pulse train
interrogation of a multiple target scene consisting of point scatterers, perhaps in motion, and
dielectric scatterers. Chirp parameters, time-duration, chirp rate and carrier frequencies may
vary over the application.

A second future goal is to develop the FZT into a waveform design tool. Based on the
work in this report, we expect to design discrete waveforms directly in Zak space exploiting
the relationship between the geometric structures supporting these waveforms in Zak space
and the effect of linear shifts and other operations on these geometric waveforms. The
specification of specially adapted windows in Zak space to best make use of this relationship
is a key component to the potential applications envisioned.

In this report we view the FZT as a stage in the Cooley-Tukey (CT) fast Fourier transform
(FFT) algorithm. At this stage, the one-dimensional input data is arranged as a two (or
higher)-dimensional data set and the algorithm proceeds by acting on this two-dimensional
data set. The advantage of viewing this computation in this two-dimensional setting is that
we can analyze the computation geometrically. We have used this approach to construct an
orthogonal eigen vector basis of the N-point FT.

The CT FFT is an example of a divide-and-conquer algorithm. This important class
of algorithms is standard in many DSP computations. Typically in this approach a one-
dimensional data set is transformed into a multi-dimensional data set and the processing
proceeds by operating on this multi-dimensional data set. For each of these algorithms we
can exploit geometric methods.

The following notation will be used throughout this report. A vector x E CgN is written

x0

- [Xn]0_<n<N

XN-1

and xK=
x K= [Xnlo<l<K.

The inner product of two vectors x and y in CN is

N-1
(x,y) = i xy*,

n=O

where * denotes complex conjugation.
eN 0 < n < N, is the vector in Cy having 1 in the n-th component and 0 in all other

components. The set
{eN: 0 < n < N}

is an orthonormal basis of CN.
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dN, 0 < n < N, is the vector in CN defined by
n1 [n = [W ]0<m<N, I = e -.

w n(N-1)

The set
{d: 0 <n <gN}

is an orthogonal basis of CN with
(dN, dN) = N.

F(N) is the N-point Fourier transform matrix

F(N) = [Wmn]0 <m, n<N

We see that
F(N)en = dN 0<n<gN.

For x E CN, D(x), is the N x N diagonal matrix

xo 0
Xl

D(x)=

0 XN-1

DN is the N x N diagonal matrix

DN =D (diN)

and DN(K) is the K x K diagonal matrix

DN(K) = D ((di))

SN is the N x N cyclic shift matrix defined by

YN-1]

SNY= YO y cN.

YN-2

DN and SN are related by
F(N)SNF(N)-1 = DN,
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and by
Se rS D r, r E Z.

The N-point time-reversal matrix RN is defined by

RNY YN-1 , y cN.

Yi

Since F(N)- 
= F(N)*,

we have
F(N) = NF(N)-IRN.

2 Chirps

A chirp pulse is any signal of the form

r e~i~t2e2•iIt 0 <t <T, t E
Xa(t) = O, otherwise,

T is the time duration, -y is the chirp rate and 6 is the carrier frequency of the chirp xa.
Assume throughout that

N = 7T 2

is a positive integer. The methods developed in this report apply to a single transmission
*of xa. In future work we will extend these methods to multiple chirp transmissions as in a
SAR system and to chirp trains perhaps with varying time-duration, chirp rates and carrier
frequencies.

-yT is usually taken as an approximation to the bandwidth of xa.
Sampling xa at the points

nT n n E Z,
N -yT

we form the critically sampled chirp
(n) { ~e•ril--e27rf -2, O_<,nZ

x'(n) = Xa (N7T) 0, otherwise, nEZ,

where f = OT.
If the chirp xa is transmitted at a point and travels a distance r to a reflector P, then

the echo at the point is
2r

axa(t - t,), tr = 2r
c
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a is a complex constant called the scattering coefficient of the reflector P. It includes
amplitude attenuation as well as reflector reflectivity. The echo from multiple reflectors Pj,
0o< j < J, is

J-1

ea(t) = Z c(j)xa(t - trj), t e •.
j=0

In an ideal model a multiple point target return satisfies

T
trj=nj., nr C Z, 0 < J,

and the critically sampled echo has the form

e3(m) =e (M, = a(j)xs (m - nj), m c Z.
k N j=0

The ideal model will be assumed throughout this report except in 15.4. However the results in
this report can be easily extended to the following perturbation of the ideal model. Suppose
R is the distance between an antenna and a point taken as the origin in an xyz-coordinate
system such that 2R T2 = n 0 -, no > 0, an integer.

c N
If r is the distance between the antenna and a point in the ellipsoid

,2
2 2 Tx2+y + T1<R N)

N 4R

then
2r T

t, - = no- + c,
c N

where T1I

N c
For

<n T- t, < T, n E ZN

we have
Xn( T - t,) e ' e-i( ! )ei( Nl77- NT) e ( N -

Since
(n -no) n-no 1

we can up to a high degree of accuracy set

n-iYc2  2i-2 ~ -C)Te' e-=
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and set

Xa ( T - t) =e e e- , f=P3T.

Suppose 0 < c. Assuming the periodicity condition

eriNe 2irif - 1,

since 0 < 6 < T, we have

xan - t) = 2

where
w x8 (m), 0<m<N-1,

y(no + m)= x,(0), m = N, m Z.
0, otherwise

The perturbation from the ideal model introduces a shift which will be more fully described
in 15.4 and a carrier frequency dependent phase factor.

The preceding discussion can be modified depending on the degree of accuracy required.
Suppose A > 0 is such that the approximation

e-2,,• = 1, 0 < n < N,

is acceptable. If r is the distance between the antenna and a point in the ellipsoid

x2 + 2 + z T RA,
N 4R

then
2r 2R

tr =- + +,
c c

where
TA

- Nc
Arguing as before we have the approximation

Xa n - tr =e-27rify(n), n Z,

where
w x(m), Im<_ N,

y(no+m)= x,(0), m=N, meZ.
0, otherwise,

Allowing for zero scattering coefficients we can write e, as

(R-1)N-1

e,(m) E a (n)x,(m - n), m CZ,
n=O
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for a sufficiently large integer R. A coefficient of this expansion may be the sum of the scat-
tering coefficients of reflectors equidistant to the transmitter/receiver. We call this expansion
for e8 the discrete echo model for the critically sampled chirp x,. The critically sampled echo
e, is the input for processing. The problem is to compute the scattering coefficients a(n),
0 < n < (R - 1)N, from the input e,. In Section 7 we begin developing methods for solving
the problem in the finite Zak transform framework.

In Section 7 we begin with an x E CN and define x' e CRN by[ x]
xRN 0 R - 1 copies of 0 N.

[ON]

An echo of xRN is any linear combination

(R-1)N-1

e= Z oa(n)S7NxRN,

n=O

where SRN is the RN x RN shift matrix. The summation is taken so that there is no aliasing
due to periodicity modulo RN and the cyclic shifts are linear shifts. The theory developed
in this report equally applies to multiple copies of xRN

The spatial resolution of xa is usually taken as T. However, as we will see, by orthogo-
nality we can distinguish two targets whose distances from the an antenna differ by

T c

N -yT

and so we will call -- the resolution of the critically sampled chirp x,. To achieve finer
resolution we can increase ,-yT. In future work we will approach the problem of finer resolution
by over sampling. This method is based on sampling xa at the points

m
KNvT, m e Z,

where K is a fixed positive integer. The resulting oversampled chirp

_2
M e'riK-Ne 2"i--N 0< m < KN,XoV(m') = Xa T) = IR,0<r

UN 0, otherwise,

can be decomposed into K sequences x(), 0 < k < K,

x(k)() Xo2(k+ nK . -
(n) =x,,(k + nK) =xov(k)xs(n)e21-

4 w, n E Z,

where x. is the critically sampled chirp.
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3 Discrete Chirps

In the first part of this report we develop the algebra of discrete chirps in the framework
of the finite Zak transform (FZT). The results of this part will be the basis for studying
critically sampled echoes beginning in Section 8.

A discrete chirp is any sequence of the form

x(n) = e'N e2nif-1, N n e Z,

which is periodic modulo N,

x(n + N) = x(n), n E Z.

The periodic modulo N condition is equivalent to

N+2f c 2Z.

Throughout this report we identify the linear space of periodic modulo N sequences with
C' by setting

y(O)
y(l) I

y .: ---=-[y(n)]o<n<y

y(N- 1) _

SN is the N-point cyclic shift matrix. A cyclic echo of y E CgN is any linear combination

N-1

e = E a(r)Svy.
r•O

If x is a discrete chirp, then the cyclic echo expansion

N-1

e = E a(r)Svx
r-O

is an orthogonal expansion and its coefficients can be computed from N inner products, a
special case of match filtering.

If x is a discrete chirp, then the multiplication operator Mx. is called x-dechirping. The
x-dechirping of a cyclic echo e of x is

N-1

Mx.e(n) = E a(r)x(-r)e-2 •iY, n E Z.
r=O

Dechirping provides a second way to compute the coefficients of a cyclic echo e of a
discrete chirp x. First x-dechirp the cyclic echo, compute its N-point FT and diagonal
matrix multiply the result by the inverse of

ND ([x(-r)]O<r<N).
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4 Finite Zak Transform (FZT)

In this section we introduce the finite Zak transform (FZT). For each positive divisor L of
N we define a linear isomorphism

ZL: CNg CL x CK, N=LK,

of CN onto CL x CK. If y E CN, then ZLy is a two-dimensional L x K time-frequency
image of y.

For a positive divisor L of N and y E C' construct the vectors Zk, 0 < k < K, in CL,

Yk[yk+K
Zk = I = [Yk+lK]0<I<L"

Yk+(L-1)K

Zk is the subvector in CL formed by the components of y over the index set

{k +lK: 0 < 1 < L}.

The sequence
Z0 , Z1 ) .... ZK-1

describes the evolution of these subvectors. If L = 1, we have the standard ordering of
the components of y. For L = 2, we have a description of the evolution from the even
components to the odd components of y.

Identify CL X CK with the space of L x K complex matrices. Define the mapping
ML : CN ---- CL X cg by

MLy=[zozl ..- zK-1], yECN,

and the mapping ZL : CN • CL x CK by

ZLy = F(L)MLy, y E CN.

ZLy provides a two-dimensional L x K image of the evolution of the FT of the sequence of
subvectors.

ZLy, y E CN, is called the L x K FZT of y or more suggestively, the L x K Zak space
representation of y. Different factorizations of N lead to different Zak space representations
each depicting different time-frequency aspects of y in the sense discussed. For example Zly
is the transpose of y while ZNy is the N-point FT of y. Throughout this report the theory is
developed for a single factorization of N. A future effort will be directed toward combining
two or more Zak space representations for the purpose of echo analysis and noise reduction.

ZL is a linear isomorphism of CN onto CL x CK with inverse

Zj 1 = M(L)-'F(L)-1.
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Up to scale factor ZL is an isometry.

IZLyI2 = Lly12, y e CN.

An orthogonal basis in C' is mapped onto an orthogonal basis in CL x CK.
In this section we derive general formulas relating the FZT of a signal with that of its

cyclic shifts. Suppose x is a vector in CN and set

ZLx = [Xo X, ... XK-l], Xk E CL.

The FZT of the cyclic shift of a signal is not simply the cyclic shift of the columns of the
FZT of the signal. The cyclic shift has its 0-th column multiplied by DL and more generally

ZL (SX) = DLZLX, O < n <L.

In this case the columns of ZLX are multiplied by DL.
For x and y in CN, the N-point cyclic convolution is defined by

N-1
U=X*y= E X rSjY.

5 FZT and CT Factorization

There are several ways to motivate the definition of the FZT. We choose the approach to the
FZT most directly related to computation. The FZT can be viewed as an implementation of
two stages of the Cooley-Tukey (CT) FFT algorithm. We approach the CT FFT algorithm
through factorizations of the N-point FT matrix F(N).

. We continue to use the notation in Section 4. The N x N stride permutation matrix
P(N, K) is defined by

P(N, K)y = [zk]o<k<K, y e CN.

1K & F(L) is the N x N block diagonal matrix

F(L) 0

IK ® F(L)

0 F(L)

Set ZL equal to the N x N matrix

ZL = (IK ® F(L)) P(N, K).

In [7], we show
F(N) = Kzg' ((IL 0 RK) P(N, L)TN(L)) ZL,
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where RK is K-point time-reversal and TN(L) is a diagonal matrix whose diagonal entries
are N-th roots of unity.

It is convenient and standard to view the N-point CT FFT as given by this CT factoriza-
tion as a multi-stage process in which a vector y E CN is first mapped onto a two-dimensional
array, operations are performed on the two-dimensional array and then the two-dimensional
array is mapped back to the vector F(N)y.

CT FFT computation of F(N)y, y E CN

"* Form the L x K array MLy.

"* Compute the L-point FT of every column of MLy.

ZLy = F(L)MLy.

These two stages correspond to the matrix product ZLY.

"* Multiply the coefficients of the L x K array ZLy by N-th roots of unity as determined
by TN(L).

"* Transpose the resulting array to form a K x L array.

"* Compute the K-point time-reversal of each column of the transposed K x L array.

The preceding two stages correspond to operating by the permutation matrix RNP(N, L).

e Form F(N)y by operating on the K x L array by KZk'.

The final stage correspond to matrix multiplication by KzK1.

6 FZT of Dechirped Echo

Throughout set w = e2 N and v = e2•iL.
In this section we compute the FZT of a dechirped cyclic echo of a discrete chirp x

N-1

e = E a(r)Srx
r=O

and compare the result with the FT of e.
Define the L x K matrix FKL(r), r E Z, by

FLrO = [eL ... eL].

We can view FKL(r) as a horizontal line in L x K Zak space at position r mod L.
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Set y = Mx.S~rx, 0 < r < N. To compute the k-th column of ZLy form the k-th column
of MLY

[Yk±]0<l<n -= x(-r)w-rk [v-rk] = x(-r)w-rkdLL,- L J 0<<L <I<L-

and then take its L-point FT
Lx(-r)w-keL.

Figure 1 displays the Zak transform of dechirped discrete chirp and its cyclic shifts.
The two-dimensional intensity data are displayed as log-scaled images. The discrete chirp
parameters are -y .25, T = 80, f = 40. N = ,T 2 = 1600. The FZT parameters are L 50
and K = 32.

Figure 1: Zak transform of dechirped discrete chirp
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cyclic shift by 10

We have that
Mx: 0 <r <N}

is an orthonormal basis of CN and the set

{ZL (Mx.SNx) 0 < r < N}

is an orthogonal basis of CL x CK.
Since the support of the L x K Zak space representation of Mx. Sj x is the horizontal

line at position r mod L, if

r =_ r mod L, 0< r, r'< N,

we cannot distinguish the vectors

Mx. Sývx and Mx. S~x

by the supports of their L x K Zak space representations. However if

r 0 r' mod L, O<r, r' <N,
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then the supports of the L x K Zak space representations of these vectors are disjoint. In
particular the supports of

{ZL (Mx.Sivx): 0 < r < L}

are pairwise disjoint.
Generally the support of the L x K Zak space representation of Mx.S~vx determines

r mod L but not r itself. To compute r we must look at the values of ZL (Mx. Sjyx) on the
horizontal line at position r mod L with values given by the vector v E CK

v = Lx(-r) [W-rk] O<kK (1)

Write
r=a+bL, O<a<L, O<b<K.

a is known and b is to be determined. Then

v = (x(-(a + bL))DgN"(K) [u- ,k] u - K

To determine b we compute
F(K)D a(K)v=cee,

where c is the complex constant

c = Nx(-(a + bL)).

b is determined as the index of nonzero component of the computation.
Figures 2 and 3 displays the Zak transform of dechirped, cyclically shifted discrete chirps.

The shift amounts are of the form a + bL, a = 11, and all congruent modulo L = 50. The
second row of the figure are plots of the values on the horizontal line through a. The third
row of the figure are plots of the vector F(K)DN(K)a = ceK. Note that the position of
nonzero value corresponds to b.

For a cyclic echo e of a discrete chirp x

N-1

e-= • •a(r)Svx,
r=O

we have
N-1

ZL (Mx.e) = L E a(r)x(-r)FKL(r)DN (K).
r=O

Since the set
{x(--r)FKL(r)D-r(K) : 0 < r < N}

is an orthogonal basis of CL x CK, we can compute the coefficients a(r), 0 < r < N, by
inner products.

There are two important special cases for applications. Suppose

L-1

e ---- a >(r)Svx.
r=0
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Figure 2: Zak transform of dechirped discrete chirp

cyclic shift by 11+2L cyclic shift by 11+7L
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We say that e is a cyclic echo from closely spaced targets. The values of ZL (Mx* e) on the
horizontal line at position 0 < r < L are given by the vector vr E CK

Vr = a(r)x(-r) [W ],

where we have divided out L. For simplicity in the discussion assume the coefficients of e
are positive real numbers or zero. Then

a(r)J

In the presence of noise we may have errors attached to the coefficients of Iv~ . We can
estimate a(r) by best estimation techniques on the K components of the noisy iv. . Figures
4 - 6 illustrates results of this denoising method. Figure 4 displays the noise-free cyclic echo
which is the sum of 5 cyclically shifted chirps with non-negative coefficients. The shifts are
9, 17, 26, 30, 32 and the respective coefficients are 0.5992, 3.0385, 0.9145, 1.8699, 1.7293.
Figure 5 displays the noisy echo obtained by adding noise to the cyclic echo in Figure 4.

The Zak transform of the dechirped noisy echo is used as input to image processing
algorithm for detecting and locating the horizontal lines. Location is exact in this case.
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Figure 4: Noise-free cyclic echo

real part imaginary part

Figure 5: Noisy echo

real part imaginary part

illustrate estimation of arbitrary scattering coefficients. The discrete chirp parameters are
- = .25, f0 = 40, N = 1600. Figure 12 displays the noise free echo which is the sum of 4
cyclically shifted discrete chirps. The Zak transform parameters are L = 40, K = 40.

The estimated shifts are accurate at 10, 16, 23, 29. In Figure 16 plots of the absolute
values of the ratio of the detected horizontal lines and the corresponding vectors given in
(1).

Table 3 compares the test values with estimated values of the scattering coefficients.
The FT approach essentially sums these errors to a single noisy component by a K-point

FT computation.
The same argument holds for a cyclic echo of a discrete chirp x of the form

L-1

e -- a (r)Sj+Ox, r0 some integer.
r=O

Observe that the Zak space representation of e does not directly determine the first target.
r0 must be known either from the application or computed by the above discussion. In future
work we will study the use of the information gained from several size FZT computations to
remove ambiguities of this kind.
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Figure 6: dB plot of signal to noise ratio

Figure 7: Zak transform of the dechirped noisy echo

40 0

Assume that the target structure is sparse relative to the sampling in the sense that there
are relatively few horizontal lines in the Zak space image of the dechirped echo as compared
with L. Since we know that the FZT of a noise free dechirped echo must be supported
on horizontal lines we can search Zak spaces for the existence and positions of these lines,
determine noise statistics under the knowledge that the Zak space representation of the
dechirped cyclic echo must vanish off of the lines and use the noise statistics to correct for
noise on the lines themselves. In the first line determination step if there are any variations
in the line structures, we can correct these variations by best line approximation methods.

For sparse target structures the FZT approach restricts scattering coefficient computation
to nonvanishing lines in Zak space while the FT approach requires computation for every
horizontal line in Zak space.

7 FZT of Discrete Chirps

In this section we describe the FZT of discrete chirps. Dechirping is a powerful tool for the
applications considered in Section 6 using either the FT or FZT. However one of the goals
of this report is to show how the framework of FZT can be used to analyze echoes in a more
general setting than that obtained in Section 6. For example the framework should allow for
multiple chirp sets and chirp pulses, perhaps at varying chirp rates and should include tools
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Figure 8: Noise-free cyclic echo

real part imaginary part

Figure 9: Noisy echo

real part imaginary part

for realizing linear shifts as well as cyclic shifts. The results of this section provide the basis
for these extensions which will be addressed in future work. At the same time these results
will suggest the use of the Zak space framework in waveform design, another topic in future
work.

Define the L x K matrix EKL(O) by

EfL(O) = [eo' e-1 ... eL(Kn1)].

As usual eL is defined for m mod L. We can view ELK(0) as the line of slope 1 through the
origin.

Set
Co = F(L)Diag [x(lK)]o<<L F(L)-1.

The support of
Co'ZLX = LEKL(O)D (XK)

is EKL(O), the line of slope 1 through the origin.
Define the L x K matrix ELK(r) by

E(r) = ,e r1.. ,(-) r EZ.
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Figure 10: dB plot of signal to noise ratio

Figure 11: Zak transform of the dechirped noisy echo

35

40

We can view EK(r) as the line of slope 1 through the point (r, 0) in L x K Zak space. As
with the horizontal lines FK(r) in Section 6, we have that

EL(r) = EL (r'), r, r' E Z,

if and only if
r - r' mod L

and that
EKL(r) and ELK (r'), r, r' EZ,

are disjoint whenever
r 0 r' mod L.

In particular the lines of slope 1

{EK(r): 0<r<L},

are pairwise disjoint in CL x CK.

As before, the set
ZL (Skx), 0 < r < N,

is an orthogonal basis in CL x CK. Since Co is a unitary matrix we have that the set

{C'ZL (Skx): 0 < r < N}
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Table 2: comparison of estimated scattering coefficients

test coefficients 1.0824 1.2694 0.6954 1.5013 2.1946 1.6165 1.8878 3.9520
average coefficients 1.0263 1.2099 0.7001 1.5277 2.1236 1.5740 1.8178 3.9048
median coefficients 1.0968 1.2717 0.6831 1.5904 2.1976 1.5031 1.8072 3.8628

Figure 12: Noise-free cyclic echo

real part imaginary part

is also an orthogonal basis in CL x CK.

Since the support of

Co'ZL (Svx) = LEK(r)D (XK) DN(K)r

is ELK(r), the line of slope 1 through the point (r, 0), the L x K Zak space representations

{ColZL(S x) : 0 <r < L}

are pairwise disjoint.
The discussion in Section 6 on the use of the FZT operating on a dechirped cyclic echo

can be directly carried over to the use of the FZT operating on a cyclic echo. The horizontal
lines FKL(r) are replaced by the lines EL(r) of slope 1.

The following condition is involved in theory and numerical experiments for notational
simplicity. It removes the necessity of multiplying by C6I to get a simple geometric inter-
pretation of results.

We say that a discrete chirp x satisfies the L x K Zak space condition if

x(1K) = 1, 0 < 1 < L.

The L x K Zak space condition is equivalent to the condition

12M + 2f C 2Z, 0<l<L, M= L

The FT and the FZT of a dechirped cyclic shift of a discrete chirp x result in sparse
outputs, a single nonzero component for the FT computation and a single horizontal line of
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Figure 13: Noisy echo

real part imaginary part

Figure 14: dB plot of signal to noise ratio

values for the FZT computation. We have just seen that the FZT of x is also sparse having
support a single line of slope 1. The analogy collapses when computing the FT of x.

Set
v = F(N)x.

A direct computation shows that

N-1 n2

Va = ww(a+)n, O < a < N.
n=O

Suppose for example N = 4 and f is even. Then

Vo 2i if,

v = 2,
V2 -2i2i ,

V3 = 2.
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Figure 15: Zak transform of the dechirped noisy echo

40ý

10 20 30 40

Figure 16: Magnitudes of the values on the detected lines/vectors given by (1)

shift by 10 shift by 16 shift by 23 shift by 29

8 Zero-padding

In preceding sections, we developed the general theory of the FZT for vectors in CN or
equivalently for periodic modulo N sequences and applied the theory to discrete chirps and
their cyclic shifts. The general theory will be extended to zero-padded vectors and applied
to zero-padded discrete chirps and their linear shifts.

Suppose x E CN and R is a positive integer. Define the zero-padding xRN of x to CRN

by
x

xN =e ®x : , R -1 copies ofNadjoined to x.

As discussed in Section 2, the cyclic shifts

S;7NxRNN, 0 < m < (R - 1)N,

are linear shifts.
We begin by describing the general theory of the FZT for zero-padded vectors. By making

use of the special form of zero-padded vectors and the finer details of the RN-point CT FFT
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Table 3: comparison of estimated scattering coefficients

test coefficients 1.5740+3.9952i 7.2175+4.7044i -1.7549-4.9605i 3.1162+1.0602i
average coefficients 1.7173+4.0692i 7.3979+4.6806i -1.5806-4.9725i 3.3206+1.1680i
median coefficients 4.3647+4.0759i 10.3068+4.7747i 0.9659-5.0327i 6.3260+1.4081i

algorithm, we show that the RL x K FZT of xN consists of the L x K FZT of x over a
region of RL x K Zak space and filtered versions of this FZT over other regions.

The cyclic shifts of xRN are more difficult to handle in the RL x K FZT framework. The
reason for this is that the Fourier transform does not commute with the shift operations.
The general theory of linear shifts is studied in Section 10.

To compute the RL x K Zak space representation of xRN we will first derive a formula
for computing the RL-point FT of a zero-padded vector u.RL, U E CL. The main tool needed
is the CT FFT factorization for the RL-point Fourier transform. Recall the following tensor
product notation.

P(RL, L) is the RL x RL stride by L permutation matrix defined as follows. Suppose
v e CRL. Form the vector w0 E CR by striding through v with stride L.

v0

VL

V(R-1)L

Off-setting by 1, form the vector w,

V1

VL+1
W,

V(R-1)L+I

Continuing in this way, form the L vectors in CR

W0 W 1 , ... , WL-1.

Define

P(RL, L)v = wl

WL-1

Define the L x L diagonal matrix DRL(L) by

DRL(L) D ([T 1l<1L), 7- e 2 r'
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and the RL x RL diagonal matrix TRL by

R-1

TRL(L) = DrL(L).

Set
CRL(L) = F(L)DRL(L)F(L)-'

and
CRL(L)

CRL(L) =

-CRR-'(L)

We will use the following CT factorization for F(RL).

F(RL) = P(RL, L) (IR ® F(L)) TRL(L) (F(R) IL).

For the rest of this report set

P P(RL, R) = P(RL, L)-1

and
C = CRL(L) and C CRL(L).

F(L)u

PF(RL)uRL = CF(L)u= CF(L)u

CR-1F(L)u

Segmenting PF(RL)uRL into R contiguous segments of size L, the first segment is F(L)u,
while the remaining segments are filtered versions of F(L)u.

Segmenting [ZLX
IczLx

PZRLxRN - = : ,ZLX

CR-1ZLx

into R contiguous segments of size L x K, the first segment is ZLX, while the remaining
segments are filtered versions of ZLx.

9 Zero-padded Discrete Chirps

We continue using the notation P = P(RL, R), C = CRL(L) and C = CRL(L).
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The problem of computing the RL x K FZT of a zero-padded vector xRN, x e CN, can
be reduced to that of computing ZLX and then placing ZLX into the matrix construction

PZRLXRN = CZLX.

We can now compute the RL x K FZT of the zero-padded discrete chirp.
Suppose x is a discrete chirp. The vector x R is called a zero-padded discrete chirp.
Since circulant matrices commute we can write

CoCoC
CCo=

CoCR-1

In the segment of RL x K Zak space formed by the first L rows, the support of PZRLX RN

is EK(0), while in the remaining segments we 'fill' the segments through the actions of CT,
1<r<R.

Similar arguments can be used to derive flexible size FZT's.

10 Windowed Linear Shifts

One of the advantages of representing an echo in Zak space is that the echo can be viewed
through different time-frequency windows in Zak space. Knowledge of the shifts making up
the echo can be used to define windows through which the echo can be more easily analyzed.
Localized, in time-frequency, noise can be rejected by choosing a window avoiding the noisy
region. For waveforms having a specific geometric structures when viewed through a window,
echo analysis and noise reduction can best proceed by restricting the echo to this window.

The formula
PZRLxRN = CZLX, x E CN,

is the starting point for studying the Zak space representation of the shifts

S XRN, 0<m<(R -1)N.

The main result shows that the restriction of PZRLS37NXRN to the first L rows of LR x K
Zak space is ZLS`Jx, 0 < m < (R - 1)N. The problem raised by restricting attention to
these first L rows of LR x K Zak space is that ambiguities are raised by the inability to
distinguish between the vectors

SR N 0 < < R,

for fixed 0 < n < N.
For x E CN, set

ZLX = [X 0 X, 1 .. XKg1] and ZRLXN = .. YK-].
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Then
ZRL (SRNXR) = [DRLYK,1 Y0 ''" YK-21

Since
CXk = PYk, 0 < k < K,

we have
PZRL (SRNXRN) = [(PD P-') CXK_ CXOf ... CXK_2]

where
DL

T-DL

PDRLP =r = eT R.

T-R-1DL

As a consequence the restriction of PZRL (SRNXRN) to the first L rows of RL x K Zak space
is

ZL (SNx) = [DL XK-1 Xo "" XK-2].

The relationship between the remaining rows of

PZRL (sNXRN) and ZL (Sx)

is more complicated due to the lack of commutativity between the FT and shift operations.
In Section 12 we develop this relationship, but as yet the results have not proved useful in
echo analysis.

Set
W0 = {(l,k) : 0_< 1 < L, 0 < k < K}.

For y E CRN

WOPZRLY

is the L x K image formed by restricting PZRLy to Wo. WOPZRLY is a view of y through
the time-frequency window Wo.

WOPZRL (SRNXRN) = ZL (Sýýx),

and
WOPZRL (SR•ixR) = WOPZRL (SNXRN), 0 < m < (R - 1)N.

11 Windowed Echos of Zero-padded Discrete Chirps

Suppose x C CN is a discrete chirp. In Section 12 we show that the set

{PZRL (S[RNXRN)" 0 < r < N}
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is not orthogonal, but the set

WOPZRL (S;rNxRN) = ZL (Sýx), 0 < r < N,

is orthogonal and the expansion

N-1 R-2
WOPZRLe : 1 o(r + sN ZLSr.x

r=O \s=O

of an echo e of xRN is an orthogonal expansion. The coefficients

R-2

Sa(r + sN), 0 < r < N,
S=O

can be computed by inner products. If the echo e has the form

N-1

e = a o(r)SiyxRN,

there is no aliasing of the coefficients, and we can compute the coefficients of the echo from
the orthogonal expansion

N-1

WOPZRLe = Z a(r)ZLSjNx,

by inner products. As in Section 6 dechirping can simplify echo analysis.
An echo of the form

N-1

e = > oa(r)SR+ oNxRN

r=O

looks the same through the window W0 for all integers ro. ro can be determined from
application, from an estimate of the starting time of the echo and potentially, from several
size FZT computations of the echo.

Define the N-periodic multiplication dechirping operator MxN) by

M.*

. 0

MxRN) = IR ® Mx.

0
Mx.

Write
m=r+sN, O<r<N, O<s<R-1.

Then
M (RN) ,-m _RN = S N ,(RN) SrXRN

• ,.•iNx : •NM(• RN) A

N replaced by RN and L replaced by RL implies

Z (sN = sLZRL (SRNY) =DRLZRLY,
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and
WOPZRL (SNy) = WoPZRLY, y e CRN.

Recall

TIL 7"SlL1
PsL p-1 =, = i.

,s(R-1) IL

Combining these results we have

WOPZRL (M=N)SR-NXRN) WOPZRL (M.N)S4NXRN).

Since 0 < r < N,

Mx(RN) r XRN = Sr ((Sjlx',) X)R,

and
WoPZRL •(M )SR-NXRN) = ZL (Mx.Svx).

Consider the echo
(R-1)N-1

e = N a(m)SvxRN.
m=O

Dechirping e and operating by WOPZRL we have

WOPZRL (Mx(N)e) = L ( a2Q(r + SN) x(-r)FK(r)DNr(K).
r=0 \ s=0

Special echoes can be handled exactly as before in Section 6.
The W0-window is emphasized in this report but there are other windows with potential

applications.

12 Linear Shifts

In this section we study the relationship between

PZRL (SrNXRN) and ZL (Sýx)

over complete RL x K Zak space. The results are technical and have as yet not been applied
to echo analysis. The presentation will be brief with several derivations omitted.

In Section 10 we showed that

PZRL (SRNXRN) = [DCXK-1 CXo ... CXK- 2],
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where D is the RL x RL diagonal matrix

DL
rDL 0

mr-br-i21ri-LD = PDRLP-1 = , e RL.

0
T R-1DL

For the remainder of this section,

m=r+sN, 0<r<N, O<s<R,

and
r=t+uL=a+bK, O<t,b<L, O<u,a<K.

For 0 < b < L, define the vector fL C CL by

fL [ 0 L-b J

and the L x L circulant matrix C(b) by

C(b) = F(L)D (fL) F(L)-1 .

The difficulty in studying the shifts

S7NxRN, 0 < m < (R - 1)N,

by their RL x K Zak space representations is due to the noncommutativity of DL and C.
DL and SL do not commute!

Define the vector gL e CL by

9b = Lb 0 < b < L.

The vectors Mk(b) C CL,

Mk(b) = C(b)DbXk, 0 < k < K,

are the blurring factors.
Suppose x E CN is a discrete chirp. Expanding

I~b b_ -, 1 C 1L ® 0 1L~ t D -C~)= LD DcL,
C=O

and
b-1

Mk(b) = x(k) • v-(•-c)kDcl
c=O
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and placing this result in

PZRL (S•NxRN) = Db [DCXK_ • • DCXK-l CX 0 ... CXK-al-].

The term
zCML (a, b)

is the problem. It is responsible for obstructing the construction of a zero-padded discrete
chirp whose linear shifts form an orthogonal set. In fact we can show that the inner product

(PZRLXRN, PZRL (SRNXRN))

is not zero. This inner product is

(CZLX, CZL (SNx)) + (CZLx, ZCML(1, 0)).

The first inner product vanishes. Since

ML(1,0) = [MK-I(1) 0L " oL],

the second inner product is

R-1

Z Z,(Xo, MK-1(1)) = -R(Xo, MK-1(1)).
C=O

From
MK-I(1)-= vx(1)lL,

we have
(Xo, MK_1(1)) = Lv-'x*(1),

and
(PZRLXRN, PZRL (SRNXRN)) = -RLv-lx*(1) $ 0.

13 Filtering Algorithms

The algorithms of Section 11 are based on windowing the RL x K Zak transform of an
echo e. In this section a more complex filtering of this Zak space image will be introduced.
Surprisingly, perhaps, the resulting algorithm has simple structure. The range of applications
is the same as that handled by the W0-window algorithm. The eventual goal is to combine
these approaches in a multiple chirp interrogation of a general target scene.

For y E CRI, write

Y=[YS]0<S<R, yseCN, 0_<s<R.

The basic idea underlying the approach in this section is to segment an echo

RN-1

y = Z• (m)SrNxRN, x a discrete chirp,
m=0
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into the R segments
yECN, 0_<s<R,

and then to compute the FZT of each segment

ZLYS, 0 < s < R.

Under certain conditions the coefficients of y can be computed by first computing the sums

ZLyS + ZLYS+1, 0 < s < R,

and then applying the methods of the preceding sections.
Suppose y E CRN. The first result relates ZRLY to the FZT of the segments of y

ZLyS, O<_s<R.

First observe that
MRLy [MLYr]O<r<R"

and
PZRLY = PF(RL)MRLy = PF(RL) [MLYrIO<r<R. (2)

The RL CT FFT factorization will be used to compute PZRLY in terms of ZLyS, 0 <
s<R.

Set

C* [IL c-'...

and
F = (F(R)-1 ®IL) C*.

F can be viewed as a Zak space filtering operation.
As before we write

m=r+sN, O<r<N, O<s<R,

and
r=a+bK=t+uL, O<a, u<K, O<b, t<L

and suppose x is a discrete chirp satisfying the L x K Zak space condition.

FPZRL (SR-NX RN) =(F(R)-1 (9IL) (DSLZL (SýX) + zDsL ML(a, b)).

Since
(F(R)-1 D IL) DsL = e8 R IL

and
(F(R)-' ® IL) (zDsL) = R g IL + e+ 1 ( IL.

we have the following.



S ,FA9550-05-C-0029: Final Executive Summary 33

Suppose y is an echo of the form

N-1

y=Z a(r + sN) JSNXRNx
r=-O

for fixed 0 < s < R. Then

R-I

ZLYS = Y a(r + sN) (ZL (Sjvx) - ML(a, b)),
r=O

R-1
ZLY.S+ = E a(r + sN)ML(a, b)

r=O

and
ZLY', = ON, .s'$ s, or s' s +1.

Then
N-1

E a(r + sN)ZL (Sývx) = ZLyS + ZLYS+1
r=O

and we can compute the coefficients of y by the previous methods from the sum

ZLYS + ZLYS+1.

The same argument shows that for echoes of the forms

* y N•1 a(r + sN)S RNxRN, for fixed 0 < s < R.

S =O a(r + sN)+sNRN + rO'(r + 2N)S NxRN for fixed 0 < si,
82 < R, with s18 - s 21 > 2

R1 N-1

y-= Z E a (r,+sN) for fixed 0 < Sl < S2 < ... < SR1 < R
j=1 r=O

where Isj - sj+l I > 2, 1 < j < R 1,

the coefficients of the echoes can be computed by the methods of the preceding sections from
the sums

ZLy. + ZLy.+1, 0 < s < R.

However if echo y has the form

N-1 N-1

y E c(r)S~rNXIN + E ao(r + N)h•r+NxRN
r=O r=O

then
N-1 N-1

ZLYj = 5 a(r)ML(a, b) + 5 a(r + N)(ZL (Sjvx) - ML(a,b)), r = a + bK,
r=O r-=O

from which we see that the information containing the coefficients of the first sum to that of
the second sum cannot be decoupled.
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14 Material Identification in Zak Space

In a previous report [1] we developed algorithms for numerically deconvolving Krueger's
formula

ea(t) f pa(t - u)x T(u)du, t E K,

relating the reflectivity kernel Pa of a dielectric material to the echo ea resulting from the
interaction of an orthogonally incident chirp xaT with the material. The goal in this section
is to describe a new deconvolution algorithm using the Zak space framework developed in
the preceding sections.

Assume throughout that Pa is supported in an interval [0, J), J estimated in some rangeT

but not known and xa a waveform supported on the interval [0, T). The echo e, is then
supported in the interval [0, T + J). Until required we do not assume that x•T is a chirp.

Choose an integer R satisfying the condition

J< RT.

If there are several possible materials under investigation, we can choose R sufficiently large
so that this condition holds for all the estimated J's.

The expression for the echo will be discretized. Choose a positive integer N. and set
M = NR. Approximate the integral by the Riemann sum corresponding to the points

m m
-RT= -T, 0 <m<M,
M N

with the resulting approximation

T M-1 m T) X(t- _ T t C .ea (t) = -E Pa -o a o -
I NM=O (

Sample the echo at the points

_RT, 0 < n < (R + 1)N,

M

with the resulting approximation

ea Tn T T m-1 Pa(= T) XT(n mT) 0 < n < (R±1)N.

Setting

a= (T) e = [ea ( T)N O<,.<N O11n<(11÷I)N

and
p, <m<M,
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the approximation can be written

T M-1 RN
e = E - p(m)S'+l)yx

e is an echo of the zero-padded vector x(R+I)N, x E CN.
In applications it sometimes useful to modify the discretization by sampling the integral

at the points m-T, 1 < m < M,

and the echo at the points n T, 1 < n<(R+ 1)N,
N'

with the resulting approximation

e n T =T p T XT , < n (R+ 1)N.
(N N m=l

By the change of variables
m= m - 1 and n' = n- 1,

e n + IT) TM- m'+ 1T'\ (MT1

) = E Pa (l J) XT (n' _

Setting
a = xT ) e = e, n-S[O<m<N N I<n<(R+1)N'

and

p(m) = IPa T($ji mT ,

we have
T M-1 RiN

e = -Z p(m + 1)Sm+I)NX(1)

The second sampling is preferred whenever we want to avoid Pa at the origin.

Methods for analyzing such echoes in Zak space were discussed in the preceding section
when xaT is a chirp

e(t) 2e e ', 0 < t < T, t ,{ 0, otherwise,

such that
N = 7T2

is a positive integer and the periodic modulo N condition holds.

e~riNe2riN3t = 1.

Assume for the rest of this report that a chirp x T satisfies these two conditions.
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Suppose now that xaT is a chirp in the formula

T (R 1-1)N-1
S- p(m)SNXP, R 1  R + 1,

derived above. Set N = LK. Windowing to the first L rows of R 1L x K Zak space, we have
that the expansion

T (Rj-1)N-1
WOPZR1Le = E • p(m)ZLS~x, P = P(R 1L, R 1),

is an orthogonal expansion after collecting like powers of SN and we can compute the sums

R1 -1

Sp(r + sN), O < r <N,

by inner products.
For sufficiently large T we can in the absence of noise compute the scattering coefficients

themselves. Suppose
J<T

and we take R = 1. Windowing to the first L rows in 2L x K Zak space

T N-1
WoP(2L, 2)Z2Le = E • p(m)ZLSvx

is an orthogonal expansion and we can compute the p(m), 0 < m < N, by inner products.
Figures 17 - 19 illustrates this orthogonality. In Figure 19, usual matched filter processing

result is also displayed and compared. Note that the matched filter processing is over the
entire space and orthogonality is lost. The relevant parameters for these figures are J = 10,
T = 20, R = 1, -y = .25 and f = 20. The Zak transform parameters are L = 10 and K = 10.
Figures 20 and 21 display equivalent information in the presence of noise.

Figure 17: Test reflectivity kernel

Suppose N has factorization N = LK such that

T
J<-.
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Figure 18: Sampled echo from discrete chirp pulse upon interrogating the test material

real part imaginary part

Figure 19: Recovered reflectivity kernels

windowed inner products matched filter processing

In 2L x K Zak space
T- L-1

WoP(2L, 2)Z 2Le = 1 : p(m)ZLSýjx.

The supports of the terms of the summation

p(m)ZLS7ýx, 0 < m <L,

are pairwise disjoint lines in L x K space. Ip(m) I is the common absolute value at each point
of the line

ELK(m), < m <.

For a noisy echo we can estimate IR(m)l from the possibly varying absolute values on the
line.

For the chirp pulse the integral is approximated by a Riemann sum corresponding to the
points

m T m 1 0<m<M.
M N in, ym M

The larger we take -yT, the finer the sampling grid, and the better the approximation. The
same is true for the reflectivity kernel samples p(m), 0 < m < M.

Figures 23 and 24 are included to illustrate how the Zak space representations reflect the
effective supports of the reflectivity kernels.
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Figure 20: Sampled noisy echo
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Figure 21: Recovered reflectivity kernel using windowed inner products

real part imaginary part

Simplest denoising in Zak domain is used to estimate the reflectivity kernel coefficients
in the presence of noise. The number of lines in the Zak space representation of the echo is
determined, then the values along each line are averaged. Figures 25 - 27 display the results
of denoising. Zak transform parameters are L = 40 and K = 40.

Setting L = 20, we have another estimate for the first 20 coefficients of the reflectivity
kernel. The comparison between these estimates are displayed against the test kernel in
figure 32. The first plot is that of the estimate from using L = 40. The second plot is the
estimate from using L = 20. The last is the average of the two sets of the estimates.

There is a second approach which potentially increases the accuracy of the integral ap-
proximation and provide better resolution for the reflectivity kernel samples. As before

J < RT.

Choose any positive integer K and set M = RNK. Sampling the integral and the echo at
the points

n -T= -nT,
M KN

we have the approximation

NM-1 . ) XT( T 0 < n < (R + 1)KN.ea NT) _-Pa \ aKNaKNU N KNm=
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Figure 22: Recovered reflectivity kernel using matched filter processing
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Figure 23: Test reflectivity kernel and the Zak transform of the echo
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The sequence

x(n) = x T(Kn , n C Z,

where xaT is a chirp is the oversampled chirp in Section 2. Future work will study the Zak
space structure of oversampled chirps, shifts and echoes.

15 Atmospheric Effects

15.1 Introduction

In this section we begin a preliminary investigation into the effects of atmospheric interference
on a waveform interrogating a ground based dielectric material froma space-based radar. We
propose two multiple measurement strategies for removing this interference by singular value
decomposition methods. In future work we plan to study methods based more significantly
on the electromagnetic differences between the atmosphere as a magnetically biased plasma
and an interrogated dielectric material.



, FA9550-05-C-0029: Final Executive Summary 40

Figure 24: Test reflectivity kernel and the Zak transform of the echo
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Figure 25: Noise-free echo
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Throughout this section atmospheric interference is modeled as a linear convolution.
Suppose a pulse xa is transmitted from a space-based radar, passes through atmospheric
interference modeled as a linear convolution with an impulse response function hl, inter-
rogates a dielectric material having reflectivity kernel pa and returns through atmospheric
interference now modeled by an impulse response function h2 . Suppressing signal translation
due to travel time the echo e, is the triple convolution

"ea(t) Ih 2 (W)Pa(V)hi(U)xa(t-W-V-)dudvdw.

By Fubini's theorem we can under natural assumptions on the waveforms in the triple con-
volution interchange orders of integration and write

ea(t) = J(h 2 * hi)(r)(p. * Xa)(t - r)dr,

where
h(r) = (h2 * hi)(r) = J h2 (w)hl(r - w)dw
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Figure 26: Noise-added echo
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Figure 27: Test and estimated reflectivity kernel
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and

Pa Xa(t) pa(V)Xa(t v)dv.

Suppose
SUPP Pa C [0, T)

and that R1 and R2 are integers such that

SUPppa C [0, R1T)

and
supp h C [, R 2T).

The echo ea is supported in the interval

[0, RT), R = R1 + R 2 + 1

and IR2T
ea(t) =-/o h(r) (Pa * Xa) (t - r)dr, t C

where

(Pa * Xa) (t) = j Pa(U)Xa(t - u)du, t E
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Figure 28: Noise-added echo
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Figure 29: Test and estimated reflectivity kernel
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Choose a positive integer N and set

M 1 = R1 N, M2 =R 2N and M = RN.

Discretizing the integral formula for the echo by

m mr = R 2T = T, 0 < m < M 2,
M2 N

and
t = -R 2T=-T O<n<M,

M2  N'
we have the approximation

(n\ T(M--1
e, n T) = M-1 h( -- T) (P_ * xa)(n ---nT) , ) < n < M.

Discretizing the integral formula for pa * x, by

u = kR 2T = kT, O<k<M1 ,
M2 N

we have the approximation

e, n T 2 M2 h m(T) Ml Pa (k T) Xa (n-(+k)T ) < n < RN.(N2m=o ( k=O (N N
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Figure 30: Noise-added echo
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Figure 31: Test and estimated reflectivity kernels
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Using the notation of the preceding sections with

e = [ea (nT) ]o x = [xa (nT)]<,<g

and

p(k)p=p( T) 0<k<Mi, h(m)=h (NT O<Tm<M2,

we have
T2 M 2 -1 Mi-I

e = E- E • h(m)p(k)SZ+kx M .
2m=0 k=0

The echo e is a linear combination of shifts of xM, however the coefficients are corrupted by
the samples of h.

In order to place these formulas within the SVD framework we define the sequences

e(n) = e( T) n C Z, x(n) = xa T I n C Z,

and

p(k) =pa T k EZ, h(m) =h mT , Z.
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Figure 32: Test and estimated reflectivity kernels

Each sequence is causal and has finite support. The echo e is the triple linear convolution
of sequences

e = T-2h* (p *x).

The problem is to estimate p * x from e. Two multiple measurement strategies will be
outlined for removing h by SVD methods. These methods are described in detail in the
following sections and codes have been implemented. The extensive treatment of these
SVD methods can potentially lead to other multiple measurement strategies and multiple
waveform strategies for removing atmospheric effects. These strategies will be studied in
future work.

15.2 Multiple Measurement Strategies

15.2.1 Strategy 1

We propose two transmissions of the same pulse xa from a space-based radar with the
assumptions that the atmospheric interference h is the same for both transmissions, but the
ground region under interrogation is a known dielectric material p, for the first transmission

and an unknown dielectric material p2 for the second transmission. The corresponding echoes
are

el = h * (p, * x) and e2 = h * (P2 * x).

Set
si = pi * x and S2 = P2 * x.

The problem is to compute S2 with s, known.

15.2.2 Strategy 2

We propose two transmissions of the same pulse xa from a space-based radar interrogating the
same dielectric material p, but the first passing through atmospheric interference h = h, * h,
and the second passing through atmospheric interference h' = (h, + A) * (h, + A), where A
is a known perturbation. The corresponding echoes are

e = h * (p * x), e' =h'* (p * x).
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The problem is to estimate h. As in Strategy 1 if h is computed, we can then compute p * x.
There are several potentially useful variants of measurement strategies 1 and 2. Different

pulses can be transmitted, pulse-trains suitably separated in time can be transmitted. Angle
of incidence dependence can be used to distinguish between h and p.

16 Future Efforts

To realize the potential of the methods and algorithms developed in this report as tools
for material identification we will carry out research leading to algorithms in the following
topics.

* Refinement and extension of existing algorithms.

• Waveform design in Zak space.

9 Multi-measurements of multiple targets, including the dependence of reflectivity kernels
on incident angle.

9 Atmospheric effects.

16.1 Refinement and extension of existing algorithms

We identify the following topics for future work

* Varying size FZT representations.

* Windows in Zak space.

* Oversampled chirp pulses.

Throughout this report, a fixed factorization N = LK is taken to represent a discrete
waveform (before zero-padding) of size N in L x K Zak space. For each factorization a
noise-free echo of a discrete chirp in Zak space is supported by a series of parallel lines of
slope 1, but the aliasing depends on the factorization. We will study how processing the
echo relative to several factorizations can be used to remove this aliasing.

In numerical experiments we have seen that echo reconstruction from noisy echoes varies
as the factorization varies. It seems that noise is distributed differently for different factor-
izations of N that is in varying size Zak space representations. We will study this dependence
to improve on noise reduction algorithms.

In this report a specific Zak space window W0 was specified so that through W0 the col-
lection of linear shifts of a critically sampled zero-padded chirp pulse is orthogonal. However
information is lost through the window. The resulting windowed orthogonal expansion of
the echo is aliased. We plan to study new windows either subsets of Zak space or unitary
transforms of windows in Zak space for removing this aliasing for critically sampled chirp
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pulses and more general sampled waveforms. These new windows can also be matched to
the noise characteristics in a specific application.

Oversampled chirp pulses were mentioned in the report with a formula relating oversam-
pled chirp pulses to critically sampled chirp pulses. We plan to study the extension of the
Zak space framework to oversampled chirp pulses. This effort will provide greater flexibility
in the use of Zak space methods to multiple chirp pulses of varying time duration and chirp
rates.

16.2 Waveform design

Zak space methods are specially tuned to critically sampled echoes of chirp pulses providing
a windowed representation supported on series of parallel lines. We plan to study

"* The representation of echoes resulting from more general waveforms, including multiple
critically sampled chirp pulses, upchirps and downchirps.

"* Waveform design directly in Zak space including lines at varying slopes, polygonal and
other geometric structures.

In the second study the inverse Zak transform will be used to construct the appropriate
discrete waveform and several methods will be used to construct continuous waveforms and
sampling rates supporting these one-dimensional discrete waveforms.

We are especially interested in designing Zak space waveforms which behave well with
respect to shifts (lines) and rotations (accelerated targets). Since the Zak space representa-
tion of FT is essentially 900 rotation, geometric structures invariant under 900 rotation may
be of special interest. In a previous report [1] we use this idea to construct an orthogonal
eigen vector basis of the FT having minimal time-frequency support.

16.3 Multiple measurements/multiple targets

In [1] we developed and tested algorithms for distinguishing Io stationary dielectric targets
along with their reflectivity kernels using Jo strip SAR measurements from chirp pulse echoes
under the assumption that the reflectivity kernels are independent of the incident angle of
the interrogating chirp pulses. The results of Section 14 will be used to develop a similar
algorithm in the Zak space framework.

As in Section 14 suppose xr is a chirp pulse
T eiriyt 2 e21rif3t, 0 <•t < T, t E R,

Xa { 0, otherwise

satisfying N =- yT2 is a positive integer and

e~riNe 2
7if = 1, f = 3iT.

Assume throughout that the relaxation constant J of all the dielectric materials interrogated
satisfy

J<T.
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The formula for the windowed critically sampled echo in Section 14 does not include the
shift due to the time traveled between antenna and target. Suppose a chirp x4T having carrier
frequency )3 is transmitted from antenna at v and orthogonally interrogates a dielectric
material with reflectivity kernel Pa at u. The echo at v is

ea(t) = 1 0 pa(t)xaUo + t - v)dv,

where uo =2v - ul. Write
CT

UO = o10 + Co,
=N

where l1 _ 0 is an integer and c < T. Then

ea (t+1 T) = JTa V)T _C + (t - v))dv.
N 0

Sampling the integral at

m n
v=-T, 0<m<N, andt=-T, 0<n<2N,

N'N

we have the approximation

eOn + 1T T N-1 Pa (-T) Xa (.o n- m T)

If co = 0, we can argue as before to compute the reflectivity kernel samples. We assume the
model introduced in 2 that T

0 < CO <

and that for co > 0, we can make the approximations

x T(-_o + T) = X-(o)e-2 o

and T (_,O + n T -2 1 <in3, N
Xa -- T =X a(T) 1 <n<N.

Setting

= [ea (n--T)1] , p(m) = p ( ,r) 0< m <N,
N O<_n<2nN

and Xa (-Eo + T)
x(•o):xoa (-Eo + IT)

x(EO) N __ 211*iI3cox x, (

TXa• (-Eo + N-)
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we have
-7iO T N-1 (S -1 \2N

e = e-2i N E p(m)S2+ (Sgix)N
m=0

and
=e2il T N-1m

WoP(2L, 2)Z 2Le = e-2_P ZLSNXiN m=0

Suppose a chirp xjT having carrier frequency /3j is transmitted from an antenna at vj and

interrogates dielectric materials having incident angle independent reflectivity kernels p(j) at
ui, 0<i<Io. Set

2 T
ui~j = 21 - Ui~ = 107~ T + 6j,

cN
where 10 _ 0 is an integer and cij < T, 0 < i < I0.

Setting

ej= [,e (n +1- )]T0) < N = [Xj (nT)lN On2N O<_n<N

and

we have from the preceding discussion that

WoP(2L, 2)Z 2Lej = TN o (EP('(m)e-()1 ,i. ZLSNx.

By orthogonality we compute

Io-1

Aj(M) = _ p(i)(m)e--21•i'•, 0 < m < N.
i=0

In matrix notation
[Aj(m)]o<m<N = REj,

where R is the N x 1o matrix

R - [ot) (ni)]o_<<,o<<o
(M) 0<m<N, 0•i<Io'

and Ej is the vector CIO.
k= [eJ27i6i~ji 0<i<Io

Processing over Jo antenna positions we compute

A = RE,

where
Ax = [Aj•(M)]o<m<N, o<j<Jo,
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and
E = [Eo E1 ... Ejo-1].

E models the geometry of the measurements. In [1] we estimated R by pseudo-inversion of E
and tested the accuracy of this inversion for several model geometry matrices E depending on
the number of antenna positions Jo the number of dielectric targets 1o, the spacing between
antenna positions and the spacing between target positions.

Suppose that the reflectivity kernels depend on the incident angle. The N x 10 reflectivity
kernel matrix R in the above discussion is replaced by Jo N x 1o reflectivity kernel matrices

R(j), 0 < j < Jo,

and we can compute by the above processing the J0 vectors in CN

[Aj(m)]o<m<N = R(j)Ej, 0 < j < Jo.

Ej is a vector in CdO depending on the carrier frequency of xj and on the distances between
antenna position vj and 1o dielectric targets.

We plan to develop algorithms for computing the matrix Rj by replacing the chirp pulse
xj by a sequence of chirp pulses at different carrier frequencies sufficiently separated in time
such that the echo for each of the chirp pulses in the sequence can be independently measured
and processed. This has the effect of replacing the vector Ej in R(j)Ej by a Io x S matrix,
S the number of chirp pulses in the sequence. The key to this approach is to choose the
different carrier frequencies so that the pseudo-inversion of the resulting 10 x S matrix will
lead to a good estimate of R(j).

The computation of R(j) provides an estimate of the reflectivity kernels of the 10 dielectric
targets at incident angles determined by the geometric relationship between antenna position
vj and the 10 dielectric targets. Processing over several antenna positions we get an incident
angle dependent collection of reflectivity kernel estimates which we can compare with existing
libraries.

In[l] we propose several models of incident angle dependence for the purpose of study-
ing the effects of these models on algorithms for distinguishing a multiple dielectric target
environment from multiple SAR measurements. For example if an antenna at

v = (0, v, h)

transmits a pulse chirp which interrogates a dielectric target at

u = (X, y, 0)

we assume that the dependence on the reflectivity kernel at u on incident angle could be
expressed by

Pa t x
i(x,0,-h)lI

In words the reflectivity kernel depends upon the slant direction and not on the broadside
direction between target and antenna. The justification for this model is that the antenna
footprint is relatively narrow in the along track direction so broadside variation is small.
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The key to future work using this approach is to determine more realistic models of
incident angle dependence and then to embed these models in algorithms.

In the preceding discussion we have not taken into account the possibility, even proba-
bility, that several dielectric targets are equidistant to given antenna position. If this is the
case the algorithms described above compute the sum of reflectivity kernels of the equidistant
targets. This is a standard SAR problem. An important part of a SAR algorithm package is
usually devoted to distinguishing equidistant targets from one antenna position by utilizing
measurements from other antenna positions. Although we have not included a discussion of
this method, they will be an important part of the algorithmic development in this effort in
SAR system algorithmic package.

16.4 Atmospheric effects

In this report we study the problem of removing the ionospheric effects from waveforms
interrogating ground based dielectric material from a space-based radar by proposing two
measurement strategies which in principle provide sufficient information to filter out the
ionospheric effects by SVD methods. Unfortunately these methods can be highly fragile in
noise.

We plan to study methods based more significantly on the electromagnetic properties
of the atmosphere as a magnetically biased plasma and especially on the electromagnetic
differences between this plasma and the interrogated dielectric material. Either combined
with SVD framework or by themselves these differences will be the basis for constructing
filters to remove ionospheric effects. We intend to study

9 The Faraday rotation introduced by waveform propagating through a magnetically
biased plasma (dielectric tensor).

e The model of magnetically biased plasma as a lossy dielectric whose electric suscepti-
bility is negative [4] in distinction from a real dielectric material.

* The impulse response function for deterministic ionosphere as presented in [5].

Dr. Richard Albanese of Brooks City Base has shown that the echo resulting from wave
propagation through a magnetically biased plasma followed by dielectric interrogation and
returning through the plasma has a measurable Faraday rotation which (in most cases) is
due solely to the plasma. Measurements of these Faraday rotations at several frequencies
can be used to extract the electromagnetic properties of the plasma at transmission time.
We intend to use this result to build an algorithm removing the ionospheric effects.

The deterministic ionospheric impulse response function depends upon electron density
profiles. However so far these profiles cannot always be relied upon. We are most interested
in the character of this impulse response function and not on its detailed expression. For
example, we intend to use the fact that the time duration of this impulse response function
is usually larger than the relaxation time of the dielectric material as a basis for removing
deterministic ionospheric effects.
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